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Abstract 

Presented are models for length of hospital stay data. The Hurdle model is an extension to the Poisson model when 
the data structure can be considered as two separate processes as was evident with the present case study. Hospital 
data was considered and collected as part of a larger study over a five year period. The Hurdle model appeared the 
most appropriate in terms of overall goodness of fit. 
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1. Introduction 

The number of bed days in hospital, from admission to 
discharge, is known as length of stay. Length of stay can 
be affected by many factors including hospital protocol, 
and has been used for many purposes including as an 
indicator of hospital resources. Readmission can also be 
an indicator of resources, as more frequent readmissions 
lead to greater resource consumption [1]. Modelling 
such data, however, does pose some statistical issues. 

Literature that involved the modelling of length of stay 
data has focused on a single admission or time to 
readmission following certain admission types. A 
particular study [2] used logistic regression to model 
length of stay by dichotomising the outcome using a cut
off point of 7 days. The average number of days has 
been modelled using multiple linear regression [3], 
which has limitations in the presence of highly skewed 
data. In another study [4], patients were followed after 
surgery to their first readmission using Cox-proportional 
hazards models for which those without a readmission 
were censored. Time to readmission after undergoing a 
certain procedure has been assessed using Poisson 
regression [5], for which repeated observations were 
ignored for simplicity. 
The primary aim of the present study is to determine 

the most effective way to model length of stay data. 
Length of stay across all readmissions over a specified 
time period will be considered for each patient. Of those 
admitted to hospital initially, not all will be readmitted 
while others could be readmitted more than once within 
the study period. Although length of stay data, a form of 
count data, is commonly modelled using the Poisson 
distribution, inferences can be biased in the presence of 
model overdispersion. Extensions are made here to 

Third Annual ASEARC Conference 

Poisson regression to handle overdispersion and an 
excess number of zeros in the data, and these extensions 
are applied to hospital readmission data. 

2. Methods 

Data Adults scheduled to undergo elective surgery at a 
hospital in the period from January 2001 to December 
2001 were recruited into this study. Hospital separations 
data were collected from this hospital on these 
participants from the time of recruitment until December 
2005. Data contain all hospital separations (admission 
and discharge dates) recorded for the patient (linked by 
medical reference number). Although the procedure 
itself is not of direct interest here as it was elective and 
considered not to affect the long term health of subjects, 
it was used here as a means of collecting information on 
and following up patients. 

The total length of stay for each participant will be 
measured across all readmissions over the study period 
(to December 2005) following the initial procedure. 
Total length of stay accounts for the number of 
readmissions and the length of stay for each readmission 
to give an overall, long term measure of hospital usage. 
Data on patient demographics and socio-economic status 
were obtained in a questionnaire given at baseline. 

Generalised Linear Models The Poisson distribution is 
used to model count data. Given a random variable Y, 
the probability of observing any specific count y is 
given by: -,.c· )? 
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A unique property of the Poisson distribution is that the 
expected value and the variance of the random variable 
are equal. Deviation from this assumption results in 
underdispersion or overdispersion. In the case of 
overdispersion, standard errors will be underestimated as 
only the observed heterogeneity in the data will be 
captured while heterogeneity relating to overdispersion 
will be unaccounted for, likely to result in Type 1 errors. 

The Negative binomial model is an extension to the 
Poisson which accounts for unobservable variation 
(overdispersion) by including a random error term (u) 
which is added to the conditional mean of the Poisson 
regression model. The probability density function 
(PDF) of the Negative binomial can be defined as: 

s-J~~~(pu)Y 
f(y: p. u) = yl 

which is essentially a Poisson model with gamma 
heterogeneity. This model is a mixture of Poisson and 
Gamma distributions and captures the observed variation 
from the Poisson and overdispersion from the Gamma 
distribution. 
More zeros than would be expected under these 

probability distribution functions can also result in 
overdispersion [6]. A zero-inflation component allows 
for this overdispersion with data assumed to come from 
two distributions. These are modelled as two latent 
classes: observations comprising only zeros while the 
other latent class models values that are not zero with the 
second class dependent on the probability of excess 
zeros from the first. Structural zeros from a binary model 
are mixed with the non-negative integer outcomes 
(which includes sample zeros) from a count distribution. 
The zero-inflated Poisson distribution accounts for the 
observable differences in the data as well as the over 
dispersion attributed to the excess zeros with the PDF 
defined as: 

{
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where p is the logistic probability of the observation 
being greater than zero. The zero-inflated Negative 
binomial is defined as: 

- {~ I (1 p) (U:~t}llr 
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where p is as defined for the zero-inflated Poisson. 
Again, the probability of an excess zero is based on the 
weight of both the structural and the sample zeros from 
the Negative binomial distribution. As with the Negative 
binomial, the zero-inflated Negative binomial captures 
overdispersion and observable variation. 
Hurdle models, also referred to as two part models [7], 

are a further extension to zero-inflated models which can 
be applied in situations where the data structure is such 
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that there are two separate processes. The first generates 
zero counts (binary model) and the second generates 
positive non-zero counts. This separation allows for 
positive counts to be assessed based on the threshold or 
Hurdle being passed. For the present study, a threshold 
value of zero is considered most meaningful. The Hurdle 
model for the Negative binomial is given by: 

,y=O 
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where p is the probability associated with exceeding the 
threshold. The second part of the model is conditional on 
the threshold probability. As this Hurdle model includes 
the zero-truncated Negative binomial model for the 
second component, this accounts for the observed and 
unobserved variation in the data in the same manner as 
does the standard Negative binomial model. 

3. Results 

There were 1601 adult participants who were eligible to 
be included in the present study. These comprised 
patients with valid questionnaire data and medical record 
numbers who were not readmitted for dialysis, renal 
failure, myeloplastic syndrome or refectory anaemia at 
any time during data collection. As readmission is of 
interest, hospital separations data regarding the initial 
procedure undertaken were removed from the dataset. 
Participants who were not readmitted to the hospital 

during the study period were assigned a value of zero for 
total length of stay. For those with at least one 
readmission, total length of stay is the sum of all 
separate lengths of stay for the participant. 

The number of readmissions ranged from 0 to 19 
(Median=O, IQR=2). The histogram in Figure 1 shows 
the distribution of number of readmissions to be highly 
right skewed (Skewness=2.6). A histogram of the 
distribution for total length of stay is shown in Figure 
2. Total length of stay has a peak at zero (Median=O) 
and is highly skewed to the right (Skewness=5.38, 
Mean=5.87). Total length of stay ranged from 0 to 192 
days (IQR=6.0). As expected, the variance is large 
(226.95) and exceeds the mean, violating the 
equidispersion assumption (Z= 37892, p<.OO 1 ). 

The negative binomial regression model which 
accounts for unobserved variability via a random effect 
is consequently fitted to model length of stay. The 
value of the dispersion parameter still suggests a large 
amount of unexplained variability. The likelihood ratio 
test (p<O.OOl) shows the Negative binomial as an 
improvement in terms of explaining overdispersion 
relative to the Poisson although a large amount of 
variation remains unexplained, potentially due to the 
large number of zeros. Fit indices AIC and BIC 
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Figure 1: Histogram of number of readmissions 

Figure 2: Histogram of total length of stay 

respectively suggest a marked improvement in fit 
relative to the Poisson (6488, 6515 compared with 
29855, 20876 respectively) suggesting that the addition 
of a random error term captures much of the 
heterogeneity that the Poisson model fails to. 

Given the data was shown to be highly overdispersed, 
a zero-inflated Negative binomial model was fitted to 
the data. This model is compared to the standard model 
using the Vuong test (Z-value=8.57, p<.001) suggesting 
the model to explain more heterogeneity than the 
Negative binomial, although the likelihood ratio test 

(x2= 54.45, p<.001) indicates that the model still fails 

to capture most of the data heterogeneity. In terms of 
goodness of fit, the values of AIC and BIC do slightly 
improve (6309, 6346 versus 6488, 6515 respectively). 

Hurdle models can be interpreted as a two art model 
with the first model a logistic model predicting the 
probability of readmission. The second model separates 

from the first model in that only those who have a 
readmission are assessed. The second model calls on 
the zero-truncated Negative binomial. The model fitted 
was total length of stay as the outcome with age and 
gender as potential predictors for demonstration 
purposes. Table 1 shows the results of this model. Age 
appeared a statistically significant predictor of total 
length of stay with older patients more likely to have 
greater length of stays than younger patients (p<O.OO 1 ). 
Substantial improvement in the fit of the Hurdle model 

Third Annual ASEARC Conference 

suggests it as the most appropriate model for these data 

(AIC=3558, BIC=3604). 

Table 1: Parameter estimaks from Hurdle 
regression model 

Robust s 95°/o 
standard confidence 

Parameter Estimate error z-value p-value Interval 

Logistic 
Intercept -1.27 0.20 -6.34 <.001 -1.66, 0.88 

Age O.ol 0.003 3.35 <.001 0.00, 0.02 
Gender 

(male) 0.03 0.11 0.24 0.81 -0.19, 0.25 

Zero-truncated Negative binomial 

Intercept 1.62 0.19 8.67 <.001 1.25, 1.98 
Age 0.02 0.01 5.95 <.001 0 01,0.03 
Gender 

(male) -0.03 0.12 -0.25 0.81 -0.27, 0.21 

4. Conclusions 

The superiority of Hurdle and zero-inflated Negative 
binomial models over the standard Poisson and Negative 
binomial regression models for modelling total length of 
stay was demonstrated. In particular, the unexplained 
heterogeneity and/or excess number of zeros can be 
characterised by the Negative binomial regression 
models. Hurdle models were found to be the most 
appropriate extension. 

Length of stay was assessed using individual level data 
as opposed to aggregated data enabling a patient's 
activities in terms of readmissions to be tracked. 

5. Discussion 

All hospital separations were recorded at only one 
hospital and therefore exclude admissions to other 
hospitals. Hospital outpatient usage was also not 
considered. Furthermore the analysis did not account for 
reason of primary admission. Length of stay can 
potentially be affected by diagnosis and/or procedure 
undertaken. Another limitation of this study is that it 
failed to account for mortality of participants over the 
course of the study. 
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